Myeloperoxidase oxidation states involved in myeloperoxidase-oxidase oxidation of thiols.

نویسنده

  • B E Svensson
چکیده

The changes in the oxidation state of the leucocyte enzyme myeloperoxidase, induced by buffer and thiols, were studied with visible-light-absorption spectroscopy. It was concluded that phosphate buffer contains small amounts of H2O2 and that thiols, when added to buffer, induce the generation of minute amounts of superoxide radical anion. These minute amounts of reduced oxygen species are suggested to account for the initiation of myeloperoxidase-oxidase oxidation of thiols. Myeloperoxidase was found to be in its Compound III oxidation state during myeloperoxidase-oxidase oxidation of thiols. However, myeloperoxidase-mediated oxidation of thiols with concomitant O2 consumption can also occur with myeloperoxidase in its Compound II oxidation state. These studies indicate that the ferro and Compound III oxidation states may not be essential intermediates in myeloperoxidase-oxidase oxidation of thiols, but rather that the formation of the Compound III oxidation state retards the reaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thiols as myeloperoxidase-oxidase substrates.

Nine low-Mr thiols were compared with regard to their ability to function as myeloperoxidase-oxidase substrates under conditions where no auto-oxidation of the thiols could be observed. The methyl and ethyl esters of cysteine were found to be about twice as active as cysteamine at pH 7.0, in terms of increased O2 consumption. Cysteine itself was poorly active, whereas glutathione, N-acetylcyste...

متن کامل

Antioxidant Effects of Vitamins C and E on the Low-Density Lipoprotein Oxidation Mediated by Myeloperoxidase

Background: Oxidative modification of low-density lipoprotein (LDL) appears to be an early step in the pathogenesis of atherosclerosis. Meanwhile, myeloperoxidase (MPO)-catalyzed reaction is one of the potent pathway for LDL oxidation in vivo. The aim of this study was to evaluate in vitro antioxidant effects of vitamins C and E on LDL oxidation mediated by MPO. Methods: MPO was isolated from f...

متن کامل

Neutrophil-generated HOCl leads to non-specific thiol oxidation in phagocytized bacteria

Phagocytic immune cells kill pathogens in the phagolysosomal compartment with a cocktail of antimicrobial agents. Chief among them are reactive species produced in the so-called oxidative burst. Here, we show that bacteria exposed to a neutrophil-like cell line experience a rapid and massive oxidation of cytosolic thiols. Using roGFP2-based fusion probes, we could show that this massive breakdo...

متن کامل

Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection.

Oxidative modification of low density lipoprotein (LDL) appears to play an important role in atherogenesis. Although the precise mechanisms of LDL oxidation in vivo are unknown, several lines of evidence implicate myeloperoxidase and reactive nitrogen species, in addition to ceruloplasmin and 15-lipoxygenase. Myeloperoxidase generates a number of reactive species, including hypochlorous acid, c...

متن کامل

Mechanism-based chemopreventive strategies against etoposide-induced acute myeloid leukemia: free radical/antioxidant approach.

Etoposide (VP-16) is extensively used to treat cancer, yet its efficacy is calamitously associated with an increased risk of secondary acute myelogenous leukemia. The mechanisms for the extremely high susceptibility of myeloid stem cells to the leukemogenic effects of etoposide have not been elucidated. We propose a mechanism to account for the etoposide-induced secondary acute myelogenous leuk...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 256 3  شماره 

صفحات  -

تاریخ انتشار 1988